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Crisis Probability Curves (CPCs): A Model for Assessing Vulnerability Thresholds

Across Space and Over Time
Lilibeth A. Acosta'*" and Fausto Galli®

ABSTRACT

The paper discusses the concept, methods and application of the Crisis Probability Curves (CPCs) to assess
vulnerability to droughts in selected regions in India, Portugal, and Russia using published data on susceptibility and
water stress indices. The CPCs, which are estimated from regression models and represented in a diagram as contour
plots, are a spatiotemporal vulnerability yardstick that estimates vulnerability levels and thresholds to the combined
impacts of environmental stress and human susceptibility (or lack of adaptive capacity). As compared to the CPCs for
Russia, those for India and Portugal tilt more towards the water stress axis. This implies that the level of vulnerability
in the latter countries tends to be more sensitive to the changes in water stress level than socio-economic susceptibility.
For a particular water stress level, however, the probability of crisis occurring in India is higher than in Portugal.
India has thus the lowest vulnerability threshold. Using pooled and panel regression, the information for three case
study regions was combined to develop a common measure of vulnerability thresholds. Building common or generic
thresholds will allow comparison of vulnerability across regions, which can be useful for policy in terms of developing
priority list for providing adaptation support in vulnerable regions. However, the results revealed that there is a risk
of under- or overestimating vulnerability thresholds when comparing regions not only with different level, but also
varying sources of vulnerability. Thus, more crucial than developing generic vulnerability thresholds is highlighting

differential vulnerability through selection of appropriate susceptibility indicators.
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INTRODUCTION

The investigation of human-environment links to
understand human adaptation to the impacts of climate
change is a challenging task because it requires appropriate
concepts and methods that transverse across various
disciplines. Stern et al. (1991:6) explained that “[the] study
of human interactions with the global environment poses
difficult problems of theory and method that [demands]
new links among disciplines, theoretical constructs to deal
with the complexities and the large spatial and temporal
scales, and careful selection of research methods”. In the
last two decades, experts from the fields of economics,
ecology, geography and sociology have developed a
number of concepts and methods for assessing human
vulnerability and adaptation including, for example, Social
Vulnerability (Adger 1999), Double Exposure (O’Brien
and Leichenko 2000), Vulnerability-Resilience (Moss et al.
2001), Risk-Chain (Heitzmann et al. 2002), Vulnerability
for Sustainability (Turner et al. 2003), Eight-Step Approach
(Polsky et al. 2003), and Intervulnerability (Acosta-Michlik
and Rounsevell 2005, 2008, Acosta-Michlik and Espaldon
2008, 2011). Each of them has its own merits depending on
the exposure unit, spatial scale and temporal duration of the
analysis.

Most of these previous vulnerability studies have thus
far focused on developing vulnerability indices and/or maps
to present an overview of vulnerability across regions but

without providing practical thresholds for a critical state.

Such thresholds can possibly inform policy where
and when adaptation actions should be made. Vulnerability
threshold is a useful concept that is applied in related
disciplines such as poverty and food security (e.g.
Chaudhuri et al. 2002; Dilley and Boudreau 2001) as well
as environment and ecology (e.g. Prato 2007; Matzdorf et
al. 2008, Lintz et al. 2011). So far, very little research has
been done to investigate vulnerability thresholds to climate
change impacts (e.g. Luers et al. 2003; Luers 2005; Adger
2006). The assessment of vulnerability to the impacts
of climate change (e.g. floods, droughts, etc.) should be
able to identify thresholds at which the level of exposure
is measurable and the ability of communities to adapt is
comparable across space and over time. This paper presents
amodeling approach called Crisis Probability Curves (CPCs)
to contribute to the assessment of vulnerability thresholds
and thus fill an important gap in vulnerability research. The
concept of CPCs captures the link between human and its
environment and its method enables the empirical estimation
of vulnerability thresholds. The empirical application of
CPCs focuses here on the vulnerability assessments of
different regions to droughts over a long period of time.

The method that we used to estimate the CPCs apply
the knowledge on probability. According to frequentist view
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on probability (Kleindorfer et al. 1993), the availability of
quantifiable albeit limited information allows the estimation
of probability of regularly occurring phenomena by their
long-run frequencies. Whilst the knowledge to understand
the vulnerability concept is limited, quantifiable information
that can measure the risks or likelihood of occurrence of
damaging events is available. It is thus possible to apply the
frequentist approach to estimate the probability of damaging
event (e.g. crisis) resulting from vulnerability. The CPCs are
estimated from regression functions and represented in a
diagram in the form of contour plots. The functions are used to
define the relationship of the magnitude of impacts (i.e. crisis)
to the level of environmental exposure (e.g. water stress) and
socio-economic susceptibility (e.g. income, education, etc.).

The authors define CPCs as a spatiotemporal
vulnerability yardstick that estimates crisis thresholds to
the combined impacts of environmental stress and human
susceptibility. It is a yardstick because the estimated
probability curves (or thresholds) represent a well-
defined measure generated from observed knowledge
of susceptibility and water stress, and validated through
various statistical techniques. It is spatiotemporal because it
allows comparisons of exposure units at a specified spatial
scale (e.g. community, province, region, country) and their
levels of vulnerability in a given temporal duration (e.g.
monthly, annually). In short, using CPCs one can compare
vulnerability levels and thresholds across regions over time.

In this study, the researchers aim to present the concept
of the CPCs, propose a method to estimate them empirically
and, using the empirical results, to show their potential in
measuring and comparing vulnerability thresholds across
regions. This article is an extension of a similar article which
generated CPCs for only one country (Acosta-Michlik et al.
2006). The added value of extending the application of the
CPCs to different countries includes regional comparative
assessments of vulnerability conditions and development of
common vulnerability thresholds. The latter is relevant for
testing the practical utility of CPCs for policy, particularly
in terms of developing priority list for providing adaptation
support in vulnerable regions. It is important to note at
this point that we only used available data from previous
literature to achieve these research objectives. The
researchers chose dataset that are consistent across regions
to allow for regional comparison. To test the applicability of
the concept and method of CPCs in measuring vulnerability
thresholds, we applied them on empirical data in selected
case study regions in India (Andhra Pradesh), Portugal
(Algarve and Alentejo) and Russia (Volgograd and
Saratov) for the period 1970-1995. These countries have
distinct social, economic, environmental and institutional
systems that are relevant for regional comparative

assessments of thresholds. The researchers assessed the
vulnerability of the people (the exposure unit) living in
these regions (the spatial scale) on an annual basis over 25
years (the temporal duration). Although the CPCs are
promising policy tools, this research is more research-
oriented, focusing on model verification. Future application
of the CPCs for policy analysis should aim not only to
use more up-to-date data but also consider the research
recommendations. Section 2 deals with the concept
underlying CPCs and section 3 the method used to estimate
them. Section 4 presents the results of the vulnerability
assessment and based on these results, section 5 draws
conclusions on the utility of the CPCs for quantifying
vulnerability thresholds.

The Security Diagrams and CPCs

The concept underlying the CPCs, which is described
in the next section, was drawn from the field of human
security. From the traditional issues on military threats,
territorial integrity and political independence, research on
human security has shifted its focus to non-conventional
threats including environmental stress brought about by
global warming. “It is now accepted that environmental
stress, often the result of global environmental change,
coupled with increasingly vulnerable societies, may
contribute to insecurity and even conflict” (Lonergan et al.
2000). Alcamo and Endejan (2002) have developed Security
Diagrams to provide quantitative meaning to earlier studies
linking environmental change and human security (Homer-
Dixon 1994, Lietzmann and Vest 1999), which were mostly
qualitative. Using Security Diagrams one can assess the
likelihood and degree of an environment-related crisis and
identify the locality of the crisis and the affected population.
They can also help to develop a broader view of how climate
change may affect national, regional and global security. The
Security Diagrams framework defines vulnerability to climate
change according to three components: environmental stress,
state susceptibility, and environmental crisis. The term “state
susceptibility” in the original definition of Security Diagrams
refers to the inability of a state (i.e. government) to resist
and recover from crisis brought about by environmental
stress. In assessing susceptibility to droughts from a socio-
economic perspective using the framework of Security
Diagrams,' Acosta-Michlik et al. (2006, 2008a) redefine
these components to make it more relevant and explicit in
understanding human vulnerability to water stress:

1. Water stress is the intensity, extent, timing and duration
of a change in normal water resource availability that
disrupts economic and human activities.

2. Socio-economic susceptibility is the inability of the state
and society to protect and support communities from

'The methods of the Security Diagrams have also been applied to assess susceptibility to droughts from environmental psychology and political science perspectives

(Alcamo et al. 2008).
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adverse water stress if market mechanisms fail to provide
the necessary resources for coping with the stress.

3. Environmental crisis is an unstable or critical economic
and human state of affairs caused by the susceptibility of
a society to water stress, which has serious adverse
consequences on economic development and requires
national or international emergency support.

From the above definition, socio-economic
susceptibility implies inability to adapt or lack of adaptive
capacity. In this paper, we thus consider susceptibility as the
inverse of adaptive capacity. Although the climate change
research community through the Intergovernmental Panel for
Climate Change (IPCC) mostly refers to adaptive capacity
as one important component of vulnerability, the researcherd
prefer to use the term susceptibility because of its relevance
to the method we chose to estimate vulnerability thresholds
in this study.

Because the vulnerability thresholds were generated
using indices of water stress, socio-economic susceptibility
and environmental crisis the CPCs are very consistent with
the Security Diagrams, as defined by Alcamo and Endejan
(2002). However, the practical utility of the Security Diagrams
framework for assessing vulnerability thresholds across space
and over time has been advanced only through systematic
integration of the concept of CPCs, as proposed by Acosta-
Michlik et al. (2006) and further developed in this paper.

Concept behind the CPCs

Following the IPCC definition of vulnerability,
the CPCs are derived from a conceptual thinking that
vulnerability is “the degree to which a system is susceptible
to, or unable to cope with, adverse effects of climate change,
including climate variability and extremes” (IPCC 2001).
Vulnerability and thus the susceptibility of a system to a
given climatic stress can be expressed through the following
function:

z2=f(x,)) [1]

a X

Crisis Probability Curves

Where the dependent variable z is a measure of the level of
vulnerability. The independent variables x and y are some
measurable indicators of the system’s susceptibility and of
the environmental stress to which the system is susceptible,
respectively (Figure 1) [1]. The horizontal dimension
represents the two independent (or input) variables x and y,
and the vertical dimension represents the outcome z from
the combined influence of the input variables. As Morgan
and Henrion (1990) explain, “[the] surface displays directly
how the value of z changes with the variations in the values
of its inputs, and is sometimes termed as response surface”.
Imagine z as a smooth surface ascending evenly uphill; we
divide this surface into four equal quadrants and choose only
the quadrant with positive x and y values (Figure la). We
want both these values to be positive because the surface of
the diagram is used to represent the level of vulnerability,
which can be zero (or no vulnerability) but, theoretically,
never negative. For example, given some scaled values of
the input variables x (susceptibility) and y (stress) between 0
and 1, the level of vulnerability is lower the closer the input
values are to zero. Referring to Figure 1a, some reader may
find it counter-intuitive to have the level of vulnerability
increasing as one goes up along the vertical z-axis, but it
is not. In this paper we assess vulnerability based on the
concept of the response surface. If one is to slice the surface
of the hill lengthwise (i.e. longitudinal), then the surface at
the lower part is larger than at the higher part of the hill.
Hence the larger the surface, the higher is the vulnerability.
So assuming that the longitudinal slices correspond to points
z1, z2, z3 and z4, if one is to plot only the edges of these
four slices (represented by the convex contours in Figure
la) on a two-dimensional diagram of x-axis and y-axis,
then the contour plot of z4 is closest (i.e. smallest response
surface) and z1 farthest (i.e. largest response surface) to
the zero values of the xy axes. Accordingly, the level of
vulnerability is lowest at z4 and highest at z1. The contour
plots are the bird’s-eye view of a finite number of slices of
the surface. These contour plots (i.e z1, ... z4), which shows
lines of constant elevation or height, measures the degree
of vulnerability at varying combination of susceptibility x
and environmental stress y. In the next section on methods,
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Figure 1. Surface (a) and contour (b) plots of the Security Diagram.
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these contour plots can be estimated using observed data of
the dependent variable z and independent variables x and y.

For the purpose of this study, the researchers are
only interested in the contour plots that correspond to the
vulnerability levels where the probabilities of crisis to
occur are high. These particular contour plots are what we
call “crisis probability curves” because they represent the
thresholds at which the levels of vulnerability could lead to
a crisis due to inability of the system to adapt to the impacts
of the stress without any emergency support. Within the
context of the Security Diagrams, the researchers estimated
two of these curves, which refer to as low crisis probability
curve (CPC)) and high crisis probability curve (CPC,)). The
CPC, and CPC, may correspond, for example, to contour
plots z, and z, in Figure 1b, respectively. The importance
of these curves is shown in the two-dimensional conceptual
representation of the Security Diagrams in Figure 2. As in
Figure 1b, the x-axis represents the index of socio-economic
susceptibility (SSI) and the y-axis represents the index of
water stress (WSI). The use of aggregated indices that are
scaled or normalized not only provides equal units for the
axes, but also allows representation of a set of relevant socio-
economic susceptibility and water stress indicators. Since the
spatial scale of this study is regional and the temporal interval
is annual, the scattered boxes in the diagram represent the
levels of the socio-economic susceptibility index and water
stress index of the region in a given year. The boxes are thus
a measure of vulnerability levels and the CPCs provide the
vulnerability thresholds at which crisis are likely to occur.
When climate change impacts such as droughts reach an
unprecedented level beyond the capacity of the people to
adapt and recover, crisis could occur. The probability of
crisis occurrence is higher the further the boxes are from the
origin and the closer they are to the CPC_, as represented by
the grey boxes.

The probability curves are a convenient yardstick for
measuring the degree of vulnerability of a region over time.
However, to make these yardsticks more policy relevant,
they should be generated from robust models that can be
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submitted to some validity tests and empirical estimations.
Among others, the statistical test and estimation of the CPC_
and CPC,, are necessary for the following reasons:

1. The distance between the two crisis probability curves,
i.e. low probability curve (CPC,) and high probability
curve (CPC,), defines the critical zone where a region
could be prone to crisis. The larger the gap between these
curves, the weaker the power of the diagram to predict the
probability of crisis incidence because many regions will
tend to be located within the critical area.

2. The distance of the curves from the intersection tells a
lot about the predictive capability of the diagram. If the
curves are farther away from the intersection or lower left
corner of the diagram, crisis occurrence is less frequent as
it gives ample space for crisis-free zone.

3. The shape of the curves influences the frequency of
crisis events. For example, crisis probability curves with
straight contours increase the number of crisis occurrence
as compared to those with convex contours.

To elaborate argument (3) above, the CPC, and CPC ,are
presented in the form of straight lines in Figure 2b. Straight
crisis probability curves increase the number of events (if the
assessment is done for one region) or number of regions (if
regional assessment is carried out) falling within the crisis
zone, as exemplified by the black boxes in the diagram. In
contrast, these boxes are below the critical levels when the
CPC, and CPC,, are convex. Consequently, it is important
to investigate whether or not the crisis probability curves
follow a straight line. To sum up, the predictive power of the
Security Diagram depends on the precision of the estimated
CPC, and CPC_, which in turn is dependent not only on the
indicators chosen to measure the level of susceptibility and
water stress, but also on the crisis data.

METHODS
Estimation of CPC Function

The vulnerability function in equation [1] was used as
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Figure 2. Convex (left) and Straight (right) Crisis Probability Curves.
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a basis for estimating the CPCs for the following regions:
Andhra Pradesh in India, Algarve and Alentejo in Portugal,
and Volgograd and Saratov in Russia. The dependent variable
z in equation [1] is a set of discrete values, taking the value
of 1 to indicate the presence and 0 to indicate the absence
of a crisis in these regions. Such a binary type of dependent
variable renders the use of conventional regression methods
inappropriate because it would result in conceptual problems
such as the need to impose unrealistic hypotheses on the
distribution of the errors and in statistical problems such
as heteroskedasticity (Greene 1993). The binary choice
model is a better statistical tool for estimating the CPCs.
This model was applied in this paper to identify the shape
of the crisis probability curves and to determine the relative
position of these curves in the Security Diagrams. In the
binary choice framework, the explanatory variables can have
a continuous distribution, as in this case, where both water
stress index (WSI) and socio-economic susceptibility index
(SSI) are continuous between 0 and 1. The latent variable
representing the unobservable indicator (i.e. the chance
that the binary event will take place) is linearly regressed
on the explanatory variables. The probability of crisis event
(P(CRI=1)) is computed by evaluating the latent variable
with values ranging from O to 1. The regression function to
estimate the latent variable is given in equation [2] and the
probability of the event is given in equation [3]:

Y, =By +B WS, +B,SSI, +ut, (2]
P(CRI, =1)=F(Y,) 3]

where WSI refers to the water stress index in region i at
time ¢, SSI the socio-economic susceptibility index in
region i at time t, and CRI occurrence of crisis in region i
at time t. In econometrics literature, there are two common
choices for the function : the standard logistic distribution
function (logit model) and the standard normal distribution
function (probit model). Both models were estimated to
determine which of them better represent the probability
of drought-related crisis in the case study regions. The
parameter estimates from both models can be interpreted as
predicted or forecasts probabilities given a set of values in
the explanatory variables (Liao 1994). Thus, the estimates
from P(CRI, = 1) are predicted probabilities of crisis
event, and these estimates were used to generate the CPCs.
Because the logit and probit models are generalized linear
models expressing the linear relationship of the probabilities
of crisis to the indices of water stress and socio-economic
susceptibility, the estimated CPCs in this paper are presented
in straight lines.?

Different model specifications to estimate equation [2]
including simple, pooled, and panel regressions were used
for the linear part of the model, but the link function F(Y,)
remained the same for all the case study regions. Control

Crisis Probability Curves

dummies were included in all regression models to consider
the breaks in the observations resulting from structural
changes. For example, for Portugal, the intercept was given
two different values corresponding to “before” and “after”
the year 1986, when Portugal joined European Union. In
the case of Russia, a different constant is allowed before
and after 1991, which was the year of the dissolution of
the Soviet Union. The CPC, and CPC, correspond to the
estimates from equation [2] at 5 % and 95 % confidence
interval, respectively. We chose these intervals to provide
a reasonable distance between the CPCs. Not only the
distance between, but also the shape of the CPCs will change
depending on the relationship between socio-economic
susceptibility and water stress over a long period of time.
The CPCs are thus not static because they take into account
the long-term development in the levels of vulnerability
indicators.

Maximum likelihood was used to estimate both the
link function F(Y) and linear specification. However, it
is well known that in a time series framework (i.e. annual
data could display a high degree of temporal dependency)
particular attention must be devoted to verify the presence of
stationary variables or cointegrated system to avoid spurious
results caused by the correlation between the stochastic
trends. Thus, prior to model specification and estimation,
a stationarity test of the time series has been performed on
all the variables to check for eventual unit roots and any
ensuing spurious regression. The data series of WSI and SSI
for India, Portugal and Russia were tested for the presence
of a unit root using the standard tool of augmented Dickey-
Fuller (ADF) test.

The Case Study Regions

The case study regions that were selected to test
the practical utility of CPCs for regional comparative
assessments include Andhra Pradesh in India, Algarve and
Alentejo in Portugal and, Volgograd and Saratov in Russia
(Figure 3). There are two important reasons for selecting
them: They have distinct social, economic, environmental
and institutional systems, which are useful for model
verification; and time-series data for the estimation of CPCs
are available from previous studies (i.e. Acosta-Michlik et
al. 2008a; Alcamo et al. 2008, Téinzler et al. 2008).

Covering an area of about 275,000 km? Andhra
Pradesh is the fifth largest state in India and the fourth most
populous. Out of the 76 M population in 2009, nearly three
quarters live in rural areas. The state has areas rich in water
resources, but also semi-arid regions where agriculture is
mainly rainfed. Although agriculture’s share to GDP has
significantly declined, the sector continues to play a vital

2The researchers applied both linear and non-linear models to identify the more appropriate regression function. The results of the linear models yielded better results

hence only the linear regression function is presented here.
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Source: Security Diagrams Project, http://www.usf.uni-kassel.de/secdiag/frame01e.html

role in the state’s economy, contributing over a third of the
state’s GDP as well as providing a livelihood for over 70
% of the population and employment to over 80 % of the
labour force. Almost 60 % of the gross cropped area lacks
stable irrigation and is categorized as "rainfed drylands".
Since 1960 droughts have frequently affected many districts
in Andhra Pradesh often causing shortage of drinking
water, loss of agriculture livelihoods, migration of families,
cumulative indebtedness, and in recent years, even suicides
of farmers.

Because of their relatively warm and dry climate
Algarve and Alentejo are the regions in Portugal that
frequently suffer from droughts, affecting the economy’s
tourism and agriculture. Portugal’s economy is very diverse
so that wealth remains rather unevenly distributed. Whilst
the areas around the capital Lisbon have per capita income
that is close to European average, those in the Alentejo
region remain very poor. With an area of 26,000 km?, the
Alentejo region covers a quarter of the Portugal’s land area.
However, it is home to only 5 % of the country's over 10 M
people in 2009. The region is predominantly agriculture with
very low contribution to the country’s GDP because many
areas are marginal. The Algarve region has a land area of
5,411 km? extending along the coastal lines. As compared to

Alentejo, many people here capitalize on tourism.
Nevertheless, both regions are among the poorest in
the country and thus receive structural support from the
European Commission.

The two case study regions in Russia are Volgograd and
Saratov, which are located in the south of Volga reservoir.
Volgograd has a land area of 113,900 km? with about 3 M
population, and Saratov has a land area of 380 km? with
less than 1 M population in 2009. The Volgograd region has
190 rivers and two big dams that support the water supply
for both industry and agriculture. Nevertheless, droughts
have significant effect on agriculture not only because the
temperature can become very high in summer (34 — 45 °C),
but also because two thirds of the annual rain falls in summer
when evaporation is very high. Saratov is in the heart of
the economic centre of Volga. With its 180 small rivers
and the milder summer temperature, the region has better
water supply than Volgograd. The region is very suitable
for agriculture, but it is also rich in mineral resources.
Consequently, machine and electric industries, petroleum
and chemical industries, and food processing companies are
important in the Saratov region. The political reforms and
ensuing crisis between 1991 and 1998 had severe impacts
on many small industries as well as middle- and low-income
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families in both regions (Shleifer and Treisman 2001).

Among the three case study areas, the region of
Andhra Pradesh in India had the highest socio-economic
susceptibility index (SSI) throughout the period 1970-1995
(Figure 4). Its susceptibility index steadily declined at a
rate faster than that of Russia from 1980 to 1995. The fall
in GDP per capita in Andhra Pradesh due to the adverse
impacts of global economic crisis caused the socio-economic
susceptibility to increase in 1991 (Acosta-Michlik et al.
2008a). Socio-economic susceptibility in the Volgograd and
Saratov regions in Russia was low, particularly in the late
1980s and early 1990s. However, the combined effects of a
global economic crisis and domestic structural adjustment
(i.e. decentralization of Soviet power) in the early 1990s have
contributed to the increase in socio-economic susceptibility
in Russia. The Portuguese regions of Algarve and Alentejo
had the second highest level of socio-economic susceptibility
from 1970 to 1979. The drastic decline in susceptibility
from 1980 can be attributed to the impacts of the structural
reforms following the fall of the dictatorship regime in 1974.
Another significant drop in the level of socio-economic
susceptibility was experienced in the Portuguese regions
from 1989, which can be traced from the structural changes

1.0
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following Portugal’s accession to the European Community
in 1986. From 1989 to 1995 the Portuguese case study regions
recorded the lowest level of socio-economic susceptibility
due to significant economic development.

The indices for water stress (WSI) showed very erratic
trend for all the case study regions from 1970 to 1995, with
the Portuguese regions showing the largest mean deviation
(Figure 4). The water stress indices were very high at over
0.8 in 1981 and 1992. Whilst the EM-DAT database did not
report any occurrence of crisis in both years, the results of
the media content analysis conducted by Tdnzler et al (2008)
reported a crisis (Table 1). The highest level of water stress
index in the case study region in India was recorded for the
year 1971. Although the level of water stress approached the
average mean level in 1972 and 1973, crises were reported
in these years. These crisis events could be explained not
only by the delayed and extended impacts of the water
stress in 1971, but also by the absence of drought adaptation
measures prior to this year. Andhra Pradesh experienced
the next highest levels of water stress in 1984 and 1986.
Again, no records of crisis were found in the EM-DAT, but
the media content analysis revealed the presence of crises in
these years. The Russian regions of Volgograd and Saratov
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Figure 4. Trends in socio-economic susceptibility and water stress, 1970-1995.

Source: Alcamo et al. 2008, Acosta-Michlik et al. 2008a.
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Table 1. Occurrences of drought-related crisis in the case study areas, 1970-1995.

1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
India 0 1 1 1 0 0 0 0 0 1 0 0 0
Portugal 0 0 0 0 1 1 0 0 0 0 0 1 0
Russia 0 0 1 0 0 1 0 0 0 0 0 0 0

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
India 0 1 0 1 1 0 0 0 0 0 1 0 0
Portugal 1 0 0 0 0 0 0 0 0 1 1 0 1
Russia 0 1 0 0 0 1 0 0 0 0 0 0 1

Note: 1 = presence of crisis, 0 = absence of crisis

Sources: EM-DAT, (Téanzler, Feil, Kromker, & Eierdanz, 2008), Golubev and Dronin (2004).

recorded the highest indices of water stress in 1972 and these three were chosen because indicator (1) covers regions
1984, during which crises were also reported. Golubev and where water use accounts for a large fraction of the total
Dronin (2004) reported other major droughts in Central and available water resources; indicator (2) represents events

Southern Russia in 1975, 1979 and 1981. where a short term but sharp decrease in water availability
affects a region; and indicator (3) includes situations in
Data description which there is an uneven spatial distribution of water

resources across a region. Alcamo et al. (2008) applied the
The main focus of this paper is the discussion of CPCs “MaxIndex” approach, which takes the maximum value of
as a model for assessing vulnerability thresholds, hence the indicators that are considered in the analysis, to generate
this section only briefly describes the methods for deriving water stress indices for the period 1970-1995.
the three input variables for estimating the CPCs. Detailed
discussion on the methods used to derive these variables The identification of relevant indicators for crisis was
are published elsewhere: Acosta-Michlik et al. (2006) a challenge because of the lack of not only information on
and Acosta-Michlik et al. (2008a) for socio-economic drought-related crisis, but also a clear concept and standard
susceptibility; Alcamo et al. (2008) for water stress; and indicators of environmental crisis from different sources and
Tdnzler et al. (2008) for drought-related crisis. for different countries. In the international disaster database
(EM-DAT), an event is reported as disaster in the database
The susceptibility index in Figure 4 was generated if it defines at least one of the following criteria: 10 or
from combining socio-economic indicators that are relevant more people reported killed; 100 people reported affected;
for improving the adaptive capacity of communities in declaration of a state of emergency; and call for international
the agricultural sector (Acosta-Michlik et al. 2008a). assistance. Using information from online news database
These indicators include financial resources, agriculture issued by Factiva (information service by Reuters & Dow
dependency, infrastructure development, health condition, Jones)and newspapers with a specific regional focus, Tdnzler
educational attainment, and gender inequality. Using fuzzy et al. (2008) applied media content analysis and impact
logic approach, a stepwise aggregation of the indicators was reports from local surveys to both validate and complement
applied to develop indices ranging from 0 to 1. An index the EM-DAT database. The media content analysis combines
of one (1) implies a very high level of susceptibility, and quantitative and qualitative coding to determine a ‘crisis’:
an index of zero (0) indicates an absence or negligible level the number of hits were noted and then the articles were
of susceptibility. (Eierdanz et al. 2008) discuss in detail screened to both verify the relevance of the article and to
the three components of fuzzy logic — fuzzification, fuzzy identify in what context the term ‘drought’ was mentioned.
inference and defuzzification — and how they applied them The assessment was based on the ““attributes” of the crisis as
to the concept of susceptibility. reported by the media, for example, ‘significant cutbacks in
hydroelectric production’, ‘curtailment of drinking supply’,
To compute the water stress index (Figure 4), this ‘the distribution of aid’, ‘the adoption of emergency plans’,
paper considered three water stress indicators that were ‘prayers for rain’, ‘demonstrations’ and even incidence
generated from the WaterGAP model (4/camo et al. 2003a, of ‘people committing suicide’ (7dnzler et al. 2008). Due
b). These indicators are: the withdrawal to availability to the dearth in regional data for Russia in both EM-DAT
ratio; the deviation of water availability from its long term and Factiva databases, we carried out additional literature
(climate-normal) average; and the percentage of area with review to improve the crisis data. To create a better database
high water stress (defined as water withdrawal to availability —on drought-related crisis (Table 1), we thus combined the
ratio of 0.4 or higher) (4lcamo et al. 2008). Although the data from EM-DAT, Tdnzler et al. (2008) and Golubev and
WaterGAP model generated a wide range of indicators, only  Dronin (2004). It is important to emphasize at this point
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that the poor quality of crisis data in terms of consistency
and completeness may have affected the statistical fit of the
estimated CPC functions.

The next section discusses the vulnerability thresholds
that were estimated from the socio-economic susceptibility
and water stress indices as well as crisis data for the selected
regions in India, Portugal and Russia.

RESULTS AND DISCUSSION
Estimated CPC Functions

Three model specifications were tested including
simple, pooled and panel regressions. The results of the logit
estimation for these different models are as follows:*

MODEL 1 (simple)
For India: Y

t

For Portugal: Y,
For Russia: Y =

t

-18.18 + 25.50 WSI, + 10.02 SSI,
-7.53 + 11.00 WSI, + 3.13 SSI,
-8.13 + 9.17 WSI, + 9.37SSI,

MODEL 2 (pooled)
For all countries: Y, = -7.73 +12.04 WSI, +3.02 SSI

MODEL 3 (panel)
For all countries: Y, = -9.82(India) -9.65(Portugal) -8.01
(Russia) +12.60 WSI + 5.70 SSI,

The signs of the intercept and coefficients are consistent
for all the countries in Model 1. Moreover, the regression
intercepts turned out to be statistically significant for all the
countries. Generally, the coefficients for WSI display rather
high levels of significance not only in Model 1 but also in the
other two models. The likelihood ratio (LR) tests show that
the null hypothesis on the significance of WSI as explanatory
variable for the probability of crisis cannot be rejected given
the very low P-Values ranging from only 0.0001 to 0.09. In
contrast, the statistical significance of the SSI coefficients
in Model 1 is rather low with P-Values for LR test ranging
from as high as 0.30 to 0.67. However, these results do
not necessarily mean that SSI is not a relevant variable to
explain the probability of crisis. The possible presence of a
unit root in the SSI time series data may have affected the
precision of the susceptibility estimators. It is worth noting
that unit-root tests such as Dickey-Fuller are characterized
by having low power. That is, they tend to be often prone
to the type Il error of accepting the null hypothesis when
in fact it is not true. This is particularly true in cases where
sample size is limited, like the models in this paper with
only 25 observations. Improving the models by using longer
time series will most likely give better results in terms of
stationarity. As for the results of Model 2, again here,

Crisis Probability Curves

whilst the intercept and WSI coefficient (in both cases the
P-Values of LR tests are smaller than 0.01) have very high
statistical significance, the SSI coefficient is less statistically
significant displaying a P-value of 0.36. However, like in
Model 2 the statistical significance of the SSI coefficient in
Model 3 has slightly improved with a P-value of 0.27. The
three models show that the statistical significance of the SSI
coefficients improves as the number of observations in the
model estimation increases.

As a summary, the estimation for the three model
specifications show that: the coefficients of both WSI and
SSI are generally of positive sign, which is consistent
with the theory that water stress and socio-economic
susceptibility have direct relationship with the probability of
water crisis; and Whilst the coefficients of WSI are always
highly significant, the statistical significance of the SSI
coefficients is rather low. There are reasons however not to
totally dismissed the importance of SSI in explaining the
occurrence of crisis.

* The first reason relates to the quantity of data and is
thus a purely technical issue. Considering the small size
of the dataset, the asymptotic nature of the results has
to be considered carefully. The suspicion that unit roots
are present in the regressors suggests some flexibility in
doing inference based on asymptotic normal distributions.
Moreover, the correct sign of the coefficients suggests
that a larger dataset (either based on longer time series, or
more countries as shown in Model 3) could improve the
significance of SSI explanatory variable.

The second reason relates to the quality of the data.
Important socio-economic indicators, which significantly
influence the occurrence of crisis, may have been
excluded from the aggregated index of socio-economic
susceptibility. It is important to mention here that in an
attempt to create a consistent dataset for different regions,
Acosta-Michlik et al. (2008a) used not only the same
number but also the same type of indicators to compute
the socio-economic susceptibility index. As a result, some
susceptibility indicators that better explain the variation in
crisis may have been neglected in the model.

Although the quantity and quality of the data that we
used to apply the concept and methods of the CPCs affected
the precision of the estimated SSI coefficients, the results of
the estimations are on the whole sufficient to illustrate the
utility of the modeling approach for assessing vulnerability
pattern and thresholds.

3 The results of the probit estimation are very similar so they are not presented here. Moreover, the statistical significance of the coefficients from the probit model is lower

than the logit model.
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Vulnerability pattern and thresholds

The boxes representing the levels of vulnerability for
the selected regions in India, Portugal and Russia show
different distribution patterns (Figure 5). For India these
boxes tend to gather together very close in the middle, right
hand side of the diagram, which implies that the case study
region in this country requires a higher level of adaptive
capacity to overcome the impacts of water stress. The
distribution of the boxes for Russia shows almost a similar
crowding pattern, but the boxes tend to group together in
the lower part of the diagram. Generally, Russia thus tends
to experience lower levels of vulnerability than India. The
distribution of the boxes for Portugal is quite dispersed,
which makes it difficult to discern any particular pattern
of vulnerability. The grey boxes represent the vulnerability
levels where water crises have occurred. In Figure 5, the
researchers superimposed the CPCs, which were estimated
from Model 1 (simple regression), on the scattered boxes.
Most grey boxes are located close to the CPCs, which is
theoretically consistent. However, few boxes that do not
show any occurrence of crisis (i.e. not grey) are also located
between the low and high probability curves. The absence
of crisis may be explained by the presence of adaptation
measures taken by governments to prevent the possible
occurrence of crisis. If such measures were taken into
consideration, these boxes should have been outside the
critical zone because the level of susceptibility would have
been lower. However, the socio-economic susceptibility
indices, which we adopted from Acosta-Michlik et al.
(2008a), do not include such information. Future application
of CPCs should thus explicitly consider adaptation policies
and programs in different regions in model estimations.

The estimated CPCs for the different regions vary
significantly in terms of inclination and position in the
diagram space (Figure 5). The CPCs for India and Portugal
tilt more towards the water stress axis, implying that the level
of vulnerability tends to be more sensitive to the changes in
water stress level than socio-economic susceptibility. The
position of the intercept of the high crisis probability curve
(CPCH) is a bit lower for India than Portugal, which means
that for given water stress level, the probability of crisis
occurring in the former is higher than the latter country. In
other words, India has lower vulnerability threshold than
Portugal. India was indeed most vulnerable to water stress
in the past as evident from the reports that farmers were
committing suicide due to crop failures and inability to pay
their debts (Newman 2007; Gruére 2008). The lack of stable
irrigation contributes to high vulnerability in many parts
of India. Moreover, unlike in Portugal where the farmers
in marginal areas receive significant income support from
the government through the Common Agricultural Policy
(CAP), the farmers in India are mostly left alone to deal with
the adverse consequences of droughts. The plot of the CPCs
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Figure 5. CPCs and vulnerability thresholds for different
case studies, 1970-1995.

for the regions in Russia is very different from India and
Portugal. The probability curves are almost equally inclined
to both water stress and socio-economic susceptibility,
which implies that both variables have similar influence
on the probability of the occurrence of crisis. The distances
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between the CPCs differ for the different regions (Figure
5). We used the same confidence intervals for the CPCH
(5 %) and CPCH (95 %) for all the case study regions.
Nonetheless, the distances between the CPCs vary across
regions depending on the values of the regression estimates.
The distance between the CPC, and CPC,, is much wider for
the regions in Portugal and Russia than for India. The power
for predicting the probability of crisis in the former regions
is thus weaker because it provides more room for crisis to
occur resulting to less precise prediction. One reason for
this is perhaps the indicators chosen to estimate CPCs,
particularly with respect to socio-economic susceptibility,
may be less relevant for crisis occurrence in these regions.
These results thus reveal the limitations of comparing
vulnerability thresholds using the same set of indicators
across regions with different economic development,
social structure and institutional system. An indicator that
is important in one country may not necessarily be relevant
for another. Consequently, adaptation measures for the same
type and level of water stress will be different for different
economic, social and institutional settings.

The plots of the CPCs estimated from Model 2
(pooled regression) as well as the occurrences of crisis for
the different case study regions are presented in Figure
6. The boxes, which represent the crisis occurrences, tend
to gather around the CPCs. These results are desirable
conceptually. However, the researchers noticed that the
distinct characteristics of the CPCs for each case study
region in terms of inclination, distance and position
are concealed by pooling together the information. The
vulnerability thresholds appear to replicate those of Portugal,
which can be ascribed to the rather dispersed pattern of its
boxes (Figure 5). Whilst building common thresholds,
such as those presented in Figure 6, would allow a direct
comparison of vulnerability across regions, there is a risk
of under- or overestimating vulnerability thresholds if the
regions have significantly different economic development,
social structure and institutional system. The results of the
different models for estimating CPCs convey an important
knowledge. That is, differential vulnerability is evident
not only at the community level (Acosta-Michlik 2005,
Acosta-Michlik et al. 2008b, Acosta-Michlik and Espaldon
2008, Acosta-Michlik and Rounsevell 2008), but also at a
higher administrative level. Highlighting the differential
vulnerability through selection of appropriate indicators of
susceptibility is crucial for estimating reliable vulnerability
thresholds.

The intercepts and regional dummy coefficients of the
estimated CPCs from Model 3 (panel regression) are almost
similar to those from Model 2. It is thus not necessary to plot
the former because the CPCs are almost identical to Figure
6.
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Figure 6. Crisis occurrence and vulnerability thresholds for
different case studies, 1970-1995.

CONCLUSIONS

The paper discusses the concept, methods and
application of CPCs to assess vulnerability in selected regions
in India (Andhra Pradesh), Portugal (Algarve and Alentejo)
and Russia (Volgograd and Saratov) using published data
on susceptibility and water stress indices for the period
1970-1995. The CPCs are vulnerability thresholds, which
are estimated from regression functions and represented
in a diagram as contour plots with constant elevation.
The functions define the relationship of the magnitude of
impacts (i.e. crisis) to the water stress and socio-economic
susceptibility indices. Similar indices are used in many
studies to assess vulnerability. However, although the
vulnerability indices from previous studies are generated
using some quantitative methods (e.g. indiscriminate
aggregation, fuzzy logic, and weighted indicators, etc.),
the assessment of vulnerability is not purely based on some
explicit empirical criteria. The indices are at best compared,
combined or mapped to derive some qualitative indication
of the level of vulnerability. Moreover, there is a dearth in
research on the empirical estimation linking susceptibility (or
lack of adaptive capacity) and water stress indices to human
impacts over time and across regions. In this paper, the novel
approach on CPCs were developed to compare these indices
to some empirically derived thresholds, offering statistically
tested and estimated criteria for regional comparative
assessments of vulnerability.

Different regression models were used to estimate
the functions of CPCs including simple, pooled and panel.
Estimating the CPCs for each case study region using
simple regression model revealed that the characteristics
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of vulnerability thresholds, as depicted in the intercept and
slope of the contour plots, are very diverse for regions with
different economic, social and institutional conditions.
Using pooled and panel regression, the information for the
three case study regions was combined to develop a common
measure of vulnerability thresholds. Building common or
generic thresholds will allow comparison of vulnerability
across regions or countries, which can be useful for policy
in terms of developing priority list for providing adaptation
support in vulnerable regions. However, the results revealed
that there is a risk of under- or overestimating vulnerability
thresholds when comparing regions not only with different
level, but also varying sources of vulnerability. Thus, more
crucial than developing generic vulnerability thresholds is
highlighting differential vulnerability through selection
of appropriate susceptibility indicators, which should not
necessarily be the same for different regions. Moreover,
regional comparisons of vulnerability thresholds using CPCs
will be more appropriate for group of countries with similar
or common attributes. For example, whilst contribution of
agriculture to GDP remains high in least developed and
developing countries, this is not the case in developed and
industrial countries. Susceptibility of agriculture to drought
due to lack of irrigation and/or crop insurance will be very
relevant when comparing countries within Asia, but not so
much between Asian and European countries like India and
Portugal.

An important contribution of this paper to vulnerability
research is the development of vulnerability thresholds that
are based on empirical methods and subject to statistical
validation. Following the discussion of the model results,
we recommend that future application of the CPCs for
vulnerability assessments should be able to: identify most
relevant susceptibility indicators for different regions to
capture differential vulnerability; include the effects of
adaptation measures to explain the non-occurrence of crisis
even at a higher level of water stress and susceptibility;
increase the number of observations to improve the statistical
significance of the regression coefficients, in particular of the
socio-economic susceptibility; and create a comprehensive
database of vulnerability impacts that adequately covers
the crisis situations in different regions. Addressing these
issues will make CPCs a practical tool for assessing not only
vulnerability conditions but also adaptation measures. The
latter is very relevant for further advancing CPCs as tools for
designing adaptation policies and monitoring policy impacts.

REFERENCES

Acosta-Michlik, L. 2005. Intervulnerability —Assessment:
Shifting  Foci from Generic Indices to Adaptive Agents
in Assessing Vulnerability to Global Environmental Change
(A Pilot Project in the Philippines). Project Report of the
Advanced Institute on Vulnerability to Global

Environmental — Change,
advanced _institutes 3.html

http://www.start.org/Program/

Acosta-Michlik, L., and Espaldon, V. 2011. Reducing vulnerability
of rural communities in the Philippines: Modelling social
links between science and policy, In: R. Kasperson and
M. Berberian (eds.), Integrating science and policy —
Vulnerability and resilience in global environmental change,
Earthscan, London, UK.

Acosta-Michlik, L. and Espaldon, V. 2008. Assessing vulnerability
of selected farming communities in the Philippines based
on a behavioural model of agent's adaptation to global
environmental change. Global Environmental Change, 18,
554-563.

Acosta-Michlik, L. and Rounsevell, M. 2005. From generic indices
to adaptive agents: Shifting foci in assessing vulnerability to
the combined impacts of globalization and climate change.
IHDP Update 1/2005, pp. 14-16.

Acosta-Michlik, L. and Rounsevell, M. 2008. An agent-based
framework for assessing vulnerability futures, In: Patt, A.,
Schréter, D., Klein, R.J.T. and de la Vega-Leinert, A.C.
(eds.) Assessing Vulnerability to Global Environmental
Change: Making information useful for adaptation policy
and decision-making. London: Earthscan.

Acosta-Michlik, L., Kumar, K.S., Klein, R.J.T. and Campe, S.
2008a. Application of fuzzy models to assess susceptibility
to droughts from a socio-economic perspective. Regional
Environmental Change, 8, 151-160. doi: 10.1007/s10113-
008-0058-4.

Acosta-Michlik, L., Chunling, L., and Kelkar, U. 2008b.
Differential Vulnerabilities to Climate Change in Asia and
the Challenges for Adaptation within the Kyoto Context, In:
Climate Change, Kyoto: Ten Years Still Counting, Grover
(ed.) (in press) Science Publishers, Inc, Enfield, New
Hampshire 03478, USA.

Acosta-Michlik, L., Eierdanz, F., Alcamo, J., Klein, R.J.T., Kumar,
K., Campe, S., Carius, A., Tanzler, D. and Kromker, D.
2006. How vulnerable is India to climatic stress? Measuring
vulnerability to drought using the Security Diagram concept.
Climate Change and Human Security, DIE ERDE Special
Volume on Climate Change, 137(1): 223-252.

Adger, W.N. 2006. Vulnerability. Global Environmental Change,
16, 268-281. doi: 10.1016/j.gloenvcha.2006.02.006.

Adger, W.N. 1999. Social vulnerability to climate change and
extremes in coastal Vietnam. World Development Vol.
27(2): 249-269.

Alcamo, J., Doll, P., Henrichs, T., Kaspar, F., Lehner, B., Rosch,
T. and Siebert, S. 2003a Development and testing of the
WaterGAP 2 global model of water use and availability. —
Hydrological Sciences 48, 3:317-337.



48

Alcamo, J., D6ll, P., Henrichs, T., Kaspar, F., Lehner, B., Rosch, T.,
and Siebert, S. 2003b. Global estimates of water withdrawals
and availability under current and future “business-as-usual”
conditions. — Hydrological Sciences 48, 3: 339-348.

Alcamo, J., and Endejan, M. 2002. The security diagram: an
approach to quantifying global environmental security. In:
Petzold-Bradley E, Carius A, Vincze A (eds) Responding
to environmental conflicts: Implications for theory and
practice. Springer, Netherlands.

Alcamo, J., Acosta-Michlik, L., Carius, A., Eierdanz, F., Klein,
R.J.T., Kromker, D. and Ténzler, D. 2008. A new approach
to quantifying and comparing vulnerability to drought.
Regional Environmental Change, 8, 137-149. doi: 10.1007/
s10113-008-0065-5.

Chaudhuri, S., Jalan, J. and Suryahadi, A. 2002. Assessing
Household Vulnerability to Poverty from Cross-sectional
Data: A Methodology and Estimates from Indonesia. World,
Department of Economics Discussion Paper Series (p. 36).
New York.

Dilley, M. and Boudreau, T.E. 2001 Coming to terms with
vulnerability: a critique of the food security definition. Food
Policy, 26, 229-247.

Eierdanz, F., Alcamo. J., Acosta-Michlik, L., Kromker, D.
and Ténzler, D. 2008. Using fuzzy set theory to address
the uncertainty of susceptibility to drought. Regional
Environmental Change, 8, 197-205. doi: 10.1007/s10113-
008-0069-1.

EM-DAT: The OFDA/CRED International Disaster Database,
Université catholique de Louvain, Brussels, Belgium.

Golubev, G. and Dronin, N. 2004. Geography of Droughts and
Food Problems in Russia (1900-2000), Report No. A 0401.
Center for Environmental Systems Research, University of
Kassel, Kurt-Wolters-Str. 3, 34109 Kassel, Germany. http://
www.usf.uni-kassel.de.

Gruére, G.P., Mehta-Bhatt, P. and Sengupta, D. 2008. Bt Cotton
and Farmer Suicides in India: Reviewing the Evidence.
IFPRI Discussion Paper 00808, Environment and Production
Technology Division, International Food Policy Research
Institute, New Delhi, India.

Heitzmann, K., Canagarajah, R.S. and Siegel, P.B. 2002.
Guidelines for Assessing the Sources of Risk and Vulnera
bility. Social Protection Discussion Paper Series No. 0218.
Social Protection Unit, Human Development Network, The
World Bank.

Homer-Dixon, T.F. 1994. Environmental scarcities and violent
conflict: evidence from cases. Int Secur 19(1):5-40.
doi:10.2307/ 2539147

IPCC. 2001. Climate Change 2001: Impacts, Adaptation, and
Vulnerability. Cambridge.

Crisis Probability Curves

Kleindorfer, P.R., Kunreuther, H.C. and Schoemaker, P.J. 1993.
Decision sciences: An integrative perspective. Cambridge
University Press, England.

Liao, T.F. 1994. Interpreting Probability Models: Logit, Probit,
and Other Generalized Linear

Models (Quantitative Applications in the Social Sciences). SAGE,
Thousand Oaks, CA.

Lietzmann, K.M, and Vest, G.D. 1999. Environment and security in
an international context. Environmental Change & Security
Project Report, Issue 5, Department of Defense, USA. http://
www.wilsoncenter.org/topics/pubs/Report5-Sect2-a.pdf

Lintz, H.E., Mccune, B., Gray, A.N., and Mcculloh, K.A. 2011.
Quantifying ecological thresholds from response surfaces.
Ecological Modelling, 222, 427-436. doi: 10.1016/j.
ecolmodel.2010.10.017.

Lonergan, S., Gustavson, K., and Carter, B. 2000. The index of
human insecurity. AVISO:2002

Luers, A.L. 2005. The surface of vulnerability: An analytical
framework for examining environmental change. Global
Environmental Change, 15, 214-223. doi: 10.1016/j.
gloenvcha.2005.04.003.

Luers, A.L., Lobell, D.B., Sklar, L.S., Addams, C.L. and Matson,
P.A. 2003. A method for quantifying vulnerability, applied to
the agricultural system of the Yaqui Valley, Mexico. Global
Environmental Change, 13, 255-267. doi: 10.1016/S0959-
3780(03)00054-2.

Matzdorf, B., Kaiser, T. and Rohner, M. 2008. Developing
biodiversity indicator to design efficient agri-environmental
schemes for extensively used grassland. October, 8, 256-
269. doi: 10.1016/j.ecolind.2007.02.002.

Morgan, M.G. and Henrion, M. 1990. Uncertainty - a Guide to
Dealing with Uncertainty in Quantitative Risk and Policy
Analysis. New York

Moss, R.H., Brenkert, A.L., and Malone, E.L. 2001. Vulnerability
To Climate Change: A Quantitative Approach. Prepared for
the U.S. Department of Energy Under Contract DACO06-
76RLO 1830.

Newman, B. 2007. A bitter harvest: Farmer suicide and the
unforeseen social, environmental and economic impacts of
the Green Revolution in Punjab, India. Development Report
No 15, FoodFirst Institute for Food and Development Policy,
Oakland, USA.

O’Brien, K.L. and Leichenko, R.M. 2000. Double Exposure:
assessing the impacts of climate change within the context
of economic globalization. Global Environmental Change
10: 221-232.

Polsky, C., Schroter, D., Patt, A., Gaffin, S., Martello, M.L.,



Journal of Environmental Science and Management Volume 16 No. 1 (June 2013)

Neft, R., Pulsipher, A., and Selin, H. 2003. Assessing vulnerabilities
to the effects of global change: an eight-step approach.
Belfer Center for Science and International Affairs Report
No. 2003-05.

Prato, T.2007. Assessing ecosystem sustainability and management
using fuzzy logic. Ecological Economics, 61, 171-177. doi:
10.1016/j.ecolecon.2006.08.004.

Shleifer, A. and Treisman, D. 2001. Without a Map: Political
Tactics and Economic Reform in Russia. MIT Press,
Massachusettes.

Téanzler, D., Feil, M., Kromker, D. and Eierdanz, F. 2008. The
challenge of validating vulnerability estimates: the option
of media content analysis for identifying drought-related
crises. Regional Environmental Change, 8, 187-195. doi:
10.1007/s10113-008-0064-6.

Turner, B.L., Kasperson, R.E., Matson, P.A., McCarthy, J.J.,
Corell, R.W., Christensen, L., Eckley, N., Kasperson, J.X.,
Luers, A., Martello, M.L., Polsky, C., Pulsipher, A., and
Schiller, A. 2003. A framework for vulnerability analysis in
sustainability science. Proceedings of the National Academy
of Sciences. Vol. 100(4).

ACKNOWLEDGMENT

The lead author would like to acknowledge the
support of her colleagues in the Security Diagrams Project
particularly Sabine Campe, Kavi S. Kumar, Richard R.J.T.
Klein, Joseph Alcamo, Frank Eierdanz, and Dennis Téanzler.
The DEKLIM Program of the German Ministry of Education
and Research provided funding for this project.



